The measure of the amount of acidity in wine is known as the "Titratable Acidity" or "Total acidity", which refers to the test that yields the total of all acids present, while strength of acidity is measured according to pH with most wines having a pH rating between 2.9-3.9 pH. The lower the pH, the higher the acidity in the wine.
In wine tasting, the term "acidity" refers to the fresh, tart and sour attributes of the wine which is evaluated in relation to how well the acidity balances out the sweetness and bitter components of the wine. There are three primary acids found in wine grapes-tartaric, malic and citric. During the course of winemaking and in the finished wines acetic, butyric, lactic and succinic acid can play significant roles.
Most of the acids involved with wine are fixed acids with the notable exception of acetic acid, mostly found in vinegar, which is volatile and can contribute to the wine fault known as volatile acidity. Sometimes additional acids are used in winemaking such as ascorbic, sorbic and sulfurous acids.
Tartaric acid
Less than half of the tartaric acid found grape is free standing, with the majority of the concentration present as potassium acid salt. During fermentation, these tartrates bind with the lees, pulp debris and precipitated tannins and pigments. While there is some variance among grape varieties and wine regions, generally about half of the deposits are soluble in the alcoholic mixture of wine. The crystallization of these tartrates can happen at unpredictable times and in a wine bottle appear like broken glass though they are in fact harmless. Winemakers will often put the wine through cold stabilization where it is exposed temperatures below freezing to encourage the tartrates to crystallize and precipitate out of the wine.
Malic acid
Malic acid, along with tartaric acid, is one of the principle organic acids found in wine grapes. It is found in nearly every fruit and berry plant but its most often associated with green apples from which flavor it most readily projects in wine. Its name comes from the Latin malum meaning "apple". In the grape vine, malic acid is involved in several processes which are essential for the health and sustainability of the vine. Its chemical structure allows it to participate in enzymatic reactions that transport energy throughout the vine. The concentration of malic acids varies depending on the grape variety with some varieties, like Barbera, Carignan and Sylvaner being naturally deposed to high levels. The levels of malic acid in grape berries are at their peak just before veraison when they can be found in concentrations as high as 20 g/l. As the vine progresses through the ripening stage, malic acid is metabolized in the process of respiration and by harvest could be as low as 1 to 9 g/l. The respiratory loss of malic acid is more pronounced in warmer climates. When all the malic acid is used up in the grape it is considered "over-ripe" or senescent. Winemakers must compensate for this loss by manually adding acid at the winery in a process known as acidification.
Malic acid can be further reduced during the winemaking process through malolactic fermentation or MLF. In this process bacteria convert the stronger (lower pH) malic acid into the softer (higher pH) lactic acid. The bacteria behind this process can be found naturally in the winery, in cooperages which make oak wine barrels that will house a population of the bacteria or it can be manually introduced by the winemaker with a cultured specimen. For some wines, the conversion of malic into lactic acid can be beneficial, especially if the wine has excessive levels of malic. For other wines, such as Chenin blanc and Riesling, it produce off flavors in the wine (such as the buttery smell of diacetyl) that would not be appealing for that variety. In general, red wines are more often put through MLF than whites which means that there is a higher likihood of finding malic acid in white wines (though there are notable exceptions like oaked Chardonnay which is often put through MLF).
Lactic acid
Citric acid
While very common in citrus fruits, such as limes, citric acid is found only in very minute quantities in wine grapes. It often has a concentration about 1/20 that of tartaric acid. The citric acid most commonly found in wine are commercially produced acid supplements derived from fermenting sucrose solutions. These inexpensive supplements can be used by winemakers in acidification to boost the total acidity of the wine. It is used less frequently than tartaric and malic due to aggressive citric flavors that it can add to the wine. When citric acid is added, it is always done after primary alcohol fermentation has been completed due to the tendency of yeast to convert citric into acetic acid. In the European Union, use of citric acid for acidification is prohibited but limited use of citric acid is permitted for removing excess iron and copper from the wine if potassium ferrocyanide is not available.
Other acids
Acetic acid is a two-carbon fatty acid produced in wine during or after the fermentation period. It is the most volatile of the primary acids associated with wine and is responsible for the sour taste of vinegar. During fermentation, activity by yeast cells naturally produce a small amount of acetic acid. If the wine is exposed to oxygen, acetobacter bacteria will convert the ethanol alcohol into acetic acid. This process is known as the "acetification" of wine and is the primary process behind wine degradation into vinegar. Excessive amounts of acetic acid is also considered a wine fault. A taster's sensitivity to acetic acid will vary but most people can detect excessive amounts at around 600 mg/l.
Ascorbic acid, also known as vitamin C, is found in young wine grapes prior to veraison but is rapidly lost throughout the ripening process. In winemaking it is used with sulfur dioxide as an anti-oxidant to prevent oxidation, often added during the bottling process for white wines. In the European Union, use of ascorbic acid as an additive is limited to 150 mg/l.
Butyric acid is a bacteria induced wine fault that can cause a wine to smell of spoiled Camembert or rancid butter.
Sorbic acid is a winemaking additive used often in sweet wines as a preservative against fungi, bacteria and yeast growth. Unlike sulfur dioxide, it does not hinder the growth of the lactic acid bacteria. In the European Union there is a limitation on the amount of sorbic acid that can be added-no more than 200 mg/l. Most humans have a detection threshold of 135 mg/l, with some having a sensitivity to detect its presence at 50 mg/l. Sorbic acid can produce off-flavors and aromas which can be described as "rancid". When lactic acid bacteria metabolizes sorbates in the wine, it creates a wine fault that is most recognizable by an aroma of crushed Pelargonium geranium leaves.
Succinic acid is most commonly found in wine but can also be present in trace amounts in ripened grapes. While concentration varies amount grape varieties, it is usually found in higher levels with red wine grapes. The acid is created as a by-product of the metabolization of nitrogen by yeast cells during fermentation. The combination of succinic acid with one molecule of ethanol will create the ester mono-ethyl succinate that is responsible for a mild, fruit aroma in wines.
No comments:
Post a Comment